하드웨어/Verilog-NN
Verilog-NN : Variational Aueo Encoder : VAE
wareeasy
2023. 2. 9. 14:12
반응형
module VAE (
input clk,
input [15:0] x,
output [15:0] y
);
// Import required libraries and modules
// Define inputs and outputs
// Create encoding layer
// Create decoding layer
// Create loss function
// Train the model
// Test the model
endmodule
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
The mostly complete chart of Neural Networks, explained
The zoo of neural network types grows exponentially. One needs a map to navigate between many emerging architectures and approaches.
towardsdatascience.com
module VAE (
input clk,
input rst,
input [15:0] x, // input data
output reg [15:0] z // output encoded data
);
// Parameters
parameter N = 16; // number of input units
parameter M = 8; // number of hidden units
// Variables
reg [15:0] h; // hidden layer
// Weights
wire [N-1:0] W_enc; // encoding weights
wire [M-1:0] b_enc; // encoding biases
wire [M-1:0] W_dec; // decoding weights
wire [N-1:0] b_dec; // decoding biases
// Encoding layer
assign h = W_enc * x + b_enc;
// Latent space
assign z = mean(h);
// Decoding layer
assign y = W_dec * h + b_dec;
// Loss function
always @(*) begin
// compute reconstruction loss
// ...
end
endmodule
https://github.com/kvfrans/variational-autoencoder
GitHub - kvfrans/variational-autoencoder: generate MNIST using a Variational Autoencoder
generate MNIST using a Variational Autoencoder. Contribute to kvfrans/variational-autoencoder development by creating an account on GitHub.
github.com
반응형